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a  b  s  t  r  a  c  t

The  synthesis  of  realistic  complex  body  movements  in  real-time  is  a difficult  problem  in  computer  graph-
ics  and  in  robotics.  High  realism  requires  the  accurate  modeling  of  the details  of  the  trajectories  for  a
large number  of  degrees  of freedom.  At  the  same  time,  real-time  animation  necessitates  flexible  sys-
tems  that  can  adapt  and  react  in  an online  fashion  to  changing  external  constraints.  Such  behaviors
can  be  modeled  with  nonlinear  dynamical  systems  in combination  with  appropriate  learning  methods.
The  resulting  mathematical  models  have  manageable  mathematical  complexity,  allowing  to  study  and
eywords:
omputer animation
rowd animation
ulti-agent coordination
istributed control
ynamic stability

design  the  dynamics  of  multi-agent  systems.  We  introduce  Contraction  Theory  as  a  tool  to treat  the  sta-
bility  properties  of such  highly  nonlinear  systems.  For  a number  of  scenarios  we derive conditions  that
guarantee  the  global  stability  and  minimal  convergence  rates  for the  formation  of  coordinated  behav-
iors  of  crowds.  In this  way  we  suggest  a new  approach  for the  analysis  and  design  of  stable  collective
behaviors  in  crowd  simulation.
elf-organization

. Introduction

The generation of realistic interactive human movements is
 difficult task with high relevance for computer graphics and
obotics. Applications such as computer games require online syn-
hesis of such movements, at the same time providing high degrees
f realism even for complex body movements. While for the off-line
ynthesis of human movements, the movements can be recorded
ff-line and retargeted to the relevant kinematic model, this pro-
edure is not possible for online synthesis. Approaches based
n physical or dynamical models (e.g. [1])  have focused on the
imulation of scenes with many interacting agents that navigate
utonomously and show interesting collective behaviors. Due to
he complexity of the underlying mathematical models, such sys-
ems are typically designed in a heuristic manner. Opposed to other
pplications in engineering, the system dynamics of such computer
nimation systems is usually not analyzed, so that robustness or
Please cite this article in press as: A. Mukovskiy, et al., Dynamical
http://dx.doi.org/10.1016/j.jocs.2012.08.019

tability guarantees for the system dynamics cannot be given.
In this paper we present first steps toward the development

f more systematic method for the design of the dynamics of
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interactive crowds. For this purpose, we approximate human
movements by relatively simple mathematical models, combining
dynamical models with appropriate learning methods. In addition,
we introduce Contraction Theory [2] as a new tool for the stability
design of complex nonlinear dynamical systems. We demonstrate
how this approach can be applied for the stability analysis of groups
of autonomously navigating characters with full body articulation.
The current research extends our previous work [3] by the devel-
opment of stability analysis for more complex scenarios, including
the control of heading direction and of the consensus behavior of
crowds.

The paper is structured as follows: The learning-based dynam-
ical model for complex human movements is briefly sketched in
Section 3. Section 4 describes the relevant control dynamics that is
required to realize complex interactions between different char-
acters in a crowd. In Section 5 we review basic concepts from
Contraction Theory. The major results of our stability analysis and
some demonstrations of their application to crowd animation are
presented in Section 6, followed by some conclusions.

2. Related work

Dynamical systems have been frequently applied in crowd ani-
ly stable control of articulated crowds, J. Comput. Sci. (2012),

mation for the simulation of autonomous collective behaviors (e.g.
[4,5]). Some of this work was  inspired by observations in biology
showing that coordinated behavior of large groups of agents, such
as flocks of birds, can be modeled as emergent behaviors arising
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y self-organization from dynamical couplings between interacting
gents [6–8].

Simple rules for such dynamic interactions have been derived
rom the observation of the motion of flocks of birds [9],  such as:
ollision avoidance by nearest neighbor distance control, velocity
atching and flock centering. The obtained models for the self-

rganization of behavior have been analyzed by application of
ethods from nonlinear dynamics [10]. They are interesting for

omputer animation because they permit to reduce the compu-
ational costs of traditional computer animation techniques, such
s scripting or path planning [5].  In addition, the generation of
ollective behavior by self-organization has the advantage that
he system can adapt autonomously to external perturbations or
hanges in the system architecture, such as the variation of the
umber of characters [7].  However, the mathematical analysis of
he underlying dynamical systems is typically quite complicated.
he dynamics describing individual agents is typically highly non-
inear [11], making a systematic treatment of stability properties
ften infeasible, even for individual characters. In addition, crowd
nimation requires the dynamic interaction of many such agents.
he control of collective behaviors of groups of agents has been
reated in mathematical control theory [12,13], however typically
ssuming highly simplified often even linear models for the agents.
roup coordination and cooperative control have also been stud-

ed in robotics, e.g. in the context of the navigation of groups of
ehicles [14,15],  or with the goal to generate collective behavior by
elf-organization. Examples are the spontaneous adaptation to per-
urbations of inter-agent communication or changes in the number
f agents [16,17]. Many approaches have only analyzed asymptotic
tability for consensus scenarios, while exponential stability what
lso allows to derive bounds for the rate of convergence has rarely
een treated [15]. The same result can be derived by application of
ontraction Theory [18], a method for the derivation of conditions

or the uniform exponential convergence of complex nonlinear sys-
ems. Opposed to classical stability analysis for nonlinear systems,
ontraction Theory permits to re-use stability results for system
omponents in order to derive conditions that guarantee the sta-
ility of the overall system. It provides a useful tool specifically for
odularity-based stability analysis and design. Contraction The-

ry has been already successfully implemented for synchronization
f DMPs (dynamic movement primitives) controlling Unmanned
erial Vehicles [19]. But the stability properties for crowd ani-
ation systems realizing human behaviors with realistic levels of

omplexity have basically never been treated before.

. System architecture

The proposed new method for the design of the collective
ynamics of interacting crowds is based on a learning-based
pproach for the modeling of human movements using dynamic
ovement primitives [20] (cf. Fig. 1). For a relevant class of
ovements, like gaits with different styles or straight vs. curved

ocomotion, a low-dimensional representation in terms of a small
umber of basic components is learned using an algorithm for ane-
hoic demixing [21]. We  showed elsewhere that this method allows
o approximate trajectories by very small number of source signals,
utperforming other dimension reduction algorithms, such as ICA
r PCA [22,21].

In order to generate the learned source signals online, the stable
olutions of a nonlinear dynamical system (dynamic primitive) are
apped onto the form of the source functions. For the synthesis
Please cite this article in press as: A. Mukovskiy, et al., Dynamical
http://dx.doi.org/10.1016/j.jocs.2012.08.019

f gait pattern a primitive is naturally modeled by oscillator [23].
he mapping from the phase space of the dynamics, defined by the
tate variables y = [y, ẏ]T , onto the values of the source functions
j was learned from training data using Support Vector Regression
 PRESS
tional Science xxx (2012) xxx–xxx

with gaussian kernel (see Ref. [20] for details). For the examples
presented in this paper each character was modeled by a single
Andronov–Hopf oscillator. The generated source signals were then
linearly combined with the linear weights wij and phase delays �ij
in order to generate the joint angle trajectories �i(t) according to
the learned anechoic mixture model that was  given by the equation:

�i(t) =
∑
j

wijsj
(
t − �ij

)
(1)

The complete reconstruction of the trajectories requires the addi-
tion of the average joint angles mi, which also were learned from
the training data.

For the special case where the dynamic primitives are given by
Hopf oscillators, whose limit cycle for appropriate choice of the
coordinate system is a circular trajectory in phase space, the phase
delays can be absorbed in an instantaneous orthogonal mapping
(rotation) M�ij in the phase plane of the oscillator (Fig. 1b). This
allows to derive dynamics for online synthesis without explicit
delays, which would greatly complicate the system dynamics. (See
Ref. [20] for further details.)

By blending of the mixing weights wij and the phase delays
�ij, intermediate gait styles can be generated. This technique was
applied to generate walking along paths with different curvatures,
changes in step length, and emotional gait styles. Interactive behav-
ior of multiple characters can be modeled by making the states of
the oscillators and the mixing weights dependent on the behav-
ior of the other characters. Such couplings, which are discussed in
more detail in the next section, result in a highly nonlinear overall
system dynamics. We  showed elsewhere that the same architec-
ture can be applied also for the generation of other types of body
motion than locomotion [20], while such examples are not dis-
cussed in this paper. The walking direction of the characters is also
changed by interpolation between straight walking and walking
along curved paths to the left or to the right. The parameters used
for blending are described in our previous publications [20,24].
Such blending is used to simulate a control of the heading direc-
tions in consensus scenarios and for obstacle avoidance during the
autonomous reordering of crowds. For the implementation of reac-
tive local obstacle avoidance we  used a dynamic navigation model
that originally was developed in robotics [25]. See Refs. [24,20] for
details concerning the implementation.

4. Control dynamics

Flexible control of the locomotion of articulating agents requires
the control of multiple variables, specifying a control dynamics
with multiple coupled levels. For the examples discussed in this
paper our system included the control of the following variables:
(1) phase within the step cycle, (2) step length, (3) gait frequency,
and (4) heading direction. The control of step phase was accom-
plished by coupling of the Andronov–Hopf oscillators [26] that
correspond to different agents, resulting in phase synchroniza-
tion. These oscillators have a stable limit cycle that corresponds to
an oscillation with constant amplitude and the (time-dependent)
phase �(t). In absence of external couplings the phase increases
linearly, i.e. �(t) = ωt + �(0), where ω is the stable eigenfrequency of
the oscillator. Control of step frequency was accomplished by vary-
ing this parameter in a time-dependent manner in dependence of
the behavior of the characters in the scene. Step-length and direc-
tion were controlled by morphing between gaits with different step
lengths or path curvatures, blending the parameters of the anechoic
ly stable control of articulated crowds, J. Comput. Sci. (2012),

mixing model (see above). In this case the controlled variables are
the blending coefficient of these mixtures. (See Ref. [20] for details.)

The formulation of the system dynamics in terms of speed
control is simplified by the introduction of the positions zi for

dx.doi.org/10.1016/j.jocs.2012.08.019
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Fig. 1. (a) Architecture of the system for real-time synthesis of complex human movements. Solutions of dynamical systems (primitives) are mapped onto source signals,
that  have been derived by anechoic demixing from training data. The solutions of the dynamical systems are mapped by Support Vector Regressions (SVR) onto the source
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ignals.  These source signals are then combined using the learned anechoic mixin
nimated characters. (b) When the dynamic primitives are modeled by nonlinear osc
rthogonal transformation M�ij , avoiding a dynamics with explicit delays.

ach individual character along its propagation path (see Fig. 2).
his variable fulfills the differential equation żi(t) = �̇ig(�i), where
he positive function g determines the instantaneous propagation
peed of the character depending on the phase within the gait
ycle. This nonlinear function was determined empirically from a
inematic model of a character. By integration of this propagation
ynamics one obtains zi(t) = G(�i(t) + �0

i
) + ci, with an initial phase

hift �0
i

and some constant ci depending on the initial position
nd phase of avatar i, and the monotonously increasing function
(�i) =

∫ �i
0
g(�)d�, where we assume G(0) = 0.

In the following we will analyze four different control rules,
hose combination allows to generate quite flexible locomotion

ehavior of a crowd of characters:
(I) Control of step frequency: a simple form of speed control

esults if the frequency of the oscillators �̇i is made dependent on
he behavior of the other characters. Assuming that ω0 be the equi-
ibrium frequency of the oscillators without interaction, this can be
ccomplished by the control dynamics:

˙
i(t) = ω0 − md

N∑
j=1

Kij[zi(t) − zj(t) − dij] (2)

he constants dij specify the stable pairwise relative distances in the
Please cite this article in press as: A. Mukovskiy, et al., Dynamical
http://dx.doi.org/10.1016/j.jocs.2012.08.019

nal formed order for each pair (i, j) of characters. The elements of
he coupling graph’s adjacency matrix K determine whether char-
cters i and j are interacting and thus dynamically coupled. These
arameters were set to Kij = 1, if the characters were coupled, and

ig. 2. Variables exploited for speed and position control. Every character i is char-
cterized by its position zi(t), the phase �i(t) and the instantaneous eigenfrequency
i(t) = �̇i(t) of the corresponding Andronov–Hopf oscillator, and a step-size scaling
arameter �i(t).
el to generate joint angle trajectories online, which specify the kinematics of the
rs the time shifts of the anechoic mixing model can be absorbed in an instantaneous

they are zero otherwise (with Kii = 0). For example, we  choose Kij = 1,
∀ i /= j for all-to-all coupling, and Kij = 1, ∀ mod(|i  − j|, N) = 1 for ring
coupling. The constant md > 0 determines the coupling strength.

With the Laplacian matrix Ld of the coupling graph (that is
assumed to be strongly connected [14,27,28]), defined by Ld

ij
= −Kij

for i /= j and Ld
ii

=
∑N

j=1Kij , and the constants ci = −
∑N

j=1Kijdij , the
last equation system can be re-written in vector form:

�̇ = ω01 − md(L
dG(� + �0) + c) (3)

(II) Control of step length: step length was varied by morphing
between gaits with short and long steps. A detailed analysis showed
that the influence of step length on propagation speed could be
well approximated by simple linear rescaling. If the propagation
velocity of character i is vi(t) = żi(t) = �̇i(t)g(�i(t)) = ωi(t)g(�i(t))
for the normal step size, then the velocity for modified step size
could be approximated by vi(t) = żi(t) = (1 + �i)ωi(t)g(�i(t)) with
the morphing parameter �i. The empirically measured propagation
velocity as function of gait phase is shown in Fig. 3(a) for different
values of the step length parameter �i.

In order to realize speed control by step length the morph-
ly stable control of articulated crowds, J. Comput. Sci. (2012),

ing parameter �i was  made dependent on the difference between

Fig. 3. (a) Propagation velocity for different values of the step-length morphing
parameter (� = [0 . . . 0.25]) as function of the gait cycle phase �. Empirical esti-
mates are well approximated by a linear rescaling of the propagation speed function
defined above ż ≈ (1 + �)g(�), for constant ω = 1. (b) The heading direction control
depends on the difference between the actual heading direction  heading and the
goal direction  goal. Movement along parallel lines was  modeled by defining ‘sliding
goals’ that moved along the lines.

dx.doi.org/10.1016/j.jocs.2012.08.019
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ctual and desired position differences dij between the agents

i = −mz
∑N

j=1K
z
ij
[zi(t) − zj(t) − dij], resulting in the control rule:

˙ i(t) = ωi(t)g(�i(t))(1 − mz

N∑
j=1

Kzij[zi(t) − zj(t) − dij])

ith the constant coupling strength mz > 0. Here the adjacency
atrix Kz of the coupling graph corresponds to the Laplacian matrix

z (according to the equivalent relationships as specified above). In
ector notation the dynamics for the control of speed by step length
an be written:

˙ = ωg(� + �0)(1 − mz(Lzz + c)) (4)

(III) Control of step phase: by defining separate controls for step
ength and step frequency the position and step phase of the charac-
ers can be varied independently. This makes it possible to simulate
rbitrary spatial patterns of characters, at the same time synchro-
izing their step phases. The additional control of step phase can
e accomplished by simple addition of a linear coupling term in Eq.
3):

˙
 = ω01 − md(L

dG(� + �0) + c) − kL�� (5)

ith k > 0 and the Laplacian L� . (All sums or differences of angular
ariables were computed by modulo 2�.)

(IV) Control of heading direction: the control of the heading
irections  i of the characters was based on differential equations
hat specify attractors for goal directions  goal

i
, which were com-

uted from ‘sliding goals’ that were placed along straight lines at
xed distances in front of the characters (Fig. 3b). The heading
ynamics was given by a nonlinear differential equation, indepen-
ently for every character [20]:

˙
i = ωi(t)(−m sin( i −  goal

i
) + g (�i(t) + �0

i )) (6)

here  goal
i

= arctan(��goal
i
/�zgoal

i
), with ��goal

i
specifying the

istance to the goal line orthogonal to the propagation direction
nd �zgoal

i
being a constant (Fig. 3b). The first term describes

 simple direction controller whose gain is defined by the con-
tant m > 0. The second term approximates oscillations of heading
irection, where g is again an empirically determined periodic
unction. Control is realized by making the morphing coefficients
hat determine the contributions of left vs. right-curved walking
ependent on the change rate  ̇i of the heading direction.

The mathematical results derived in the following sections apply
o subsystems derived from the complete system dynamics defined
y Eqs. (4),  (5) and (6). In addition, simulations will be presented
hat illustrate the range of behaviors that can be modeled by the
ull system dynamics.

. Elements from Contraction Theory

The dynamical systems for the modeling of the behavior of the
utonomous characters derived in the last section are essentially
onlinear. In contrast to linear dynamical systems, a major dif-
culty of the analysis of such nonlinear systems is that stability
roperties of systems parts usually do not transfer to composite
ystems. Contractiontheory (CT) [2] provides a general method for
he analysis of essentially nonlinear systems that permits such a
ransfer. This makes it suitable for the analysis of complex systems
hat are composed from components. CT characterizes the system
Please cite this article in press as: A. Mukovskiy, et al., Dynamical
http://dx.doi.org/10.1016/j.jocs.2012.08.019

tability by the behavior of the differences between solutions with
ifferent initial conditions. If these differences vanish exponentially
ver time independent from the chosen initial states the system is
alled contracting. In this case the system is globally asymptotically
 PRESS
tional Science xxx (2012) xxx–xxx

stable,  that is all its solutions converge to a single trajectory inde-
pendent from the initial state. For a general dynamical system of
the form

ẋ = f(x, t) (7)

we assume that x(t) is one solution of the system and x̃(t) = x(t) +
ıx(t) a neighboring one with different initial condition. The func-
tion ıx(t) is also called virtual displacement. With the Jacobian of
the system J(x, t) = ∂f(x, t)/∂x it can be shown [2] that any virtual
displacement decays exponentially to zero over time if the symmet-
ric part of the Jacobian Js = (J + JT)/2 is uniformly negative definite,
denoted as Js < 0, i.e. has negative eigenvalues for all relevant state
vectors x. In this case, it can be shown that the norm of the virtual
displacement decays at least exponentially to zero for t→ ∞.  If the
virtual displacement is small enough, then

d

dt
ıx(t) = J(x, t)ıx(t)

implies through d
dt ||ıx(t)||2 = 2ıxT (t)Js(x, t)ıx the inequality:

||ıx(t)|| ≤ ||ıx(0)||e
∫ t

0

max(Js(x,s))ds. The decay of the virtual displace-

ment occurs thus with a convergence rate (inverse timescale)
that is bounded from below by the contraction rate �c =
−sup

x,t

max(Js(x, t)), where 
max(.) signifies the largest eigenvalue.

This has the consequence that all trajectories converge to a single
solution exponentially in time [2].

Contraction analysis can be applied to hierarchically coupled sys-
tems that are given by the dynamics

d

dt

(
x1

x2

)
=
(

f1(x1)

f2(x1, x2)

)
(8)

where the first subsystem is not influenced by the state of

the second. The corresponding Jacobian F =
(

F11 0
F21 F22

)
implies

for the dynamics of the virtual displacements:
d

dt

(
ıx1
ıx2

)
=(

F11 0
F21 F22

)  (
ıx1
ıx2

)
. If F21 is bounded, then the exponential con-

vergence of the first subsystem, (following from (F11)s < 0), implies
thus convergence of the whole system, if in addition (F22)s < 0. This
follows from the fact the term F21ıx1 is just an exponentially decay-
ing disturbance for the second subsystem. (See Ref. [2] for details
of proof.)

In practical applications many systems are not contracting with
respect to all dimensions of the state space, but rather show con-
vergence only with respect to a subset of dimensions. This behavior
can be mathematically characterized by partial contraction [18,28].
The underlying idea is the construction of an auxiliary system that is
contracting with respect to a subset of dimensions (or submanifold)
in state space. The major result is the following [18]:

Theorem 1. (Partial contraction) Consider a nonlinear system of the
form ẋ = f(x, x, t) and the auxiliary system ẏ = f(y, x, t). If the auxil-
iary system is contracting with respect to y uniformly for all relevant
x then the original system is called partially contracting. This implies
that if a particular solution of the auxiliary system verifies a specific
smooth property then all trajectories of the original system also verify
this property with exponential convergence.

A ‘smooth property’ is a property of the solution that depends
ly stable control of articulated crowds, J. Comput. Sci. (2012),

smoothly on space and time (assuming the relevant derivatives
or partial derivatives exist and are continuous), such as conver-
gence against a particular solution or a properly defined distance
to submanifold in phase space ([18]).

dx.doi.org/10.1016/j.jocs.2012.08.019
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It thus is sufficient to show that the auxiliary system is contract-
ng to prove convergence to a subspace. If the original system has

 flow-invariant linear subspace M, which is defined by the prop-
rty that trajectories starting in this space always remain in it (∀t:
(M, t) ⊂ M), and assuming that the matrix V is an orthonormal
rojection onto M⊥, then a sufficient condition for global expo-
ential convergence to M is given by [27,28]:(
∂f
∂x

)
s

VT < 0, (9)

here A < 0 again indicates that the matrix A is negative definite.
Finally, we introduce here a theorem that provides sufficient

onditions for synchronization of a network that is composed
rom N identical dynamical systems that communicate through a
ommon medium or channel with state variable �. The relevant
ynamics is given by

ẋ  = f(x, �, t),

�̇ = g(�, (x), t)
, (10)

 containing the state variables of the individual systems and all
omponents of f having the same form f. Exploiting the last Partial
ontraction theorem the following result can be derived [29]:

heorem 2. (Quorum sensing) If the reduced order virtual system
˙  = f (y, �, t) is contracting for all relevant � then all solutions of the
riginal system converge exponentially against a single trajectory, i.e.
xi(t) − xj(t)| → 0 as t→ + ∞.

.  Results: stability conditions for crowd control

In the following we derive stability conditions for the for-
ation of coordinated behavior of crowds, providing contraction

ounds for four scenarios corresponding to control problems with
ncreasing levels of complexity. Corresponding crowd behaviors are
llustrated by demo movies that are provided as supplements for
he manuscript.

(1) Control of step phase without position control: this simple
ontrol rule permits to simulate step synchronization, as in the case
f a group of soldiers [28], [Demo1]. The dynamics for this case is
iven by Eq. (5) with md = 0 (omitting the position control term). For

 identical dynamical systems with symmetric identical coupling
ains Kij = Kji = k the dynamics can be written

˙ i = f(xi) + k
∑
j∈Ni

(
xj − xi

)
, ∀i = 1, . . . , N (11)

here Ni defines the index set specifying the neighborhood in the
oupling graph, i.e. the other characters that are directly interac-
ing with character i. The system can be rewritten compactly: ẋ =
(x, t) − kLx with the concatenated phase variable x = [xT1, ..., xTN]T .
he matrix L = LG

⊗
Ip is derived from the Laplacian matrix of the

oupling graph LG, where p is the dimensionality of the individual
ub-systems (Ip is the identity matrix of dimension p, and

⊗
signi-

es the Kronecker product). The Jacobian of this system is given by
(x,t)= D(x,t) - kL, where the block-diagonal matrix D(x, t) contains
he Jacobians of the uncoupled components ∂f

∂x
(xi, t).

The dynamics has a flow-invariant linear subspace M that con-
ains the particular solution x∗

1 = · · · = x∗
n. For this solution all state

ariables xi are identical and thus in synchrony. In this case, the
oupling term in Eq. (11) vanishes, so that the form of the solu-
Please cite this article in press as: A. Mukovskiy, et al., Dynamical
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ion is identical to the one of an uncoupled system ẋi = f(xi). If V
s a projection matrix onto the invariant subspace M⊥, then by
q. (9) the sufficient condition for convergence toward M is given

1 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video0.avi
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by V(D(x, t) − kL)sVT < 0 [28]. This implies 
min

(
V(kL)sV

T
)

= k
+
L >

sup
x,t

max (Ds), with 
+

L being the smallest non-zero eigenvalue of

symmetrical part of the Laplacian Ls. (For strongly connected cou-
pling graphs all the nonzero eigenvalues of Ls are real positive,
due to the Gershgorin’s disc theorem [30].) The sufficient con-
dition for global stability of the overall system is given by k >
sup
x,t

max

(
∂f
∂x

(x, t)
)
/
+

L . This implies the minimum convergence

rate: �c = −sup
x,t

max(V(D(x, t) − L)sVT ). Different topologies of the

coupling graphs result in different Laplacians and thus stability
conditions. For example 
+

L = 2(1 − cos(2�/N)) for symmetric cou-
pling of the ring topology, and 
+

L = N for all-to-all coupling, where
N is the number of avatars. (See Refs. [18] and [28] for more details.)
In the particular case of Eq. (11) with md = 0, for the phase coupling
of Hopf oscillators with xi = �i, we  have f(xi) = ω0 = const and the
contraction condition becomes k
+

L > 0 with the uniform contrac-
tion rate �c = k
+

L for k > 0.
(2) Speed control by variation of step frequency:
the dynamics of this scenario is given by Eqs. (3) and (4) for

mz = 0. Assuming arbitrary initial distances and phase offsets of dif-
ferent propagating characters, implying by G(�0

i
) = ci that ci /= cj,

for i /= j, we  redefine dij as dij − (ci − cj) in Eq. (2),  and accordingly
c in Eq. (3).  Furthermore, we  assume for this analysis a scenario
where the characters follow one leading character whose dynamics
does not receive input from the others. In this case all phase trajec-
tories converge to a single unique trajectory only if ci = cj for all i,
j, as consequence of the strict correspondence between gait phase
and position that is given by Eq. (3).  In all other cases the trajec-
tories of the followers converge to one-dimensional, but distinct
attractors that are uniquely defined by ci. These attractors corre-
spond to a behavior where the followers’ positions oscillate around
the position of the leader. The partial contraction of the dynamics
with c = 0 guarantees that the resulting attractor area is bounded in
phase space (cf. Ch. 3.7.vii in Ref. [2]).

For the analysis of contraction properties we  regard an auxil-
iary system obtained from Eq. (3) by keeping only the terms that
depend on �: �̇ = −mdLdG(� + �0). According to Theorem 1 the
symmetrized Jacobian of this system projected onto the orthogonal
complement of the flow-invariant linear subspace �∗

1 + �0
1 = . . . =

�∗
N + �0

N determines whether this system is partially contracting.
By virtue of a linear change of variables, the study of the contrac-
tion properties of this system is equivalent to study the contraction
properties of the dynamical system �̇ = −mdLdG(�) on trajectories
converging toward the flow-invariant manifold �∗

1 = . . . = �∗
N .

The sufficient conditions for (exponential) partial con-
traction toward flow-invariant subspace are, (see Eq. (9)):
VJs(�)VT = − mdVB(�)VT < 0, introducing B(�) = LdDg + Dg(Ld)T and V
signifying the projection matrix onto the orthogonal complement
of the flow-invariant linear subspace. For diffusive coupling with
symmetric Laplacian the linear flow-invariant manifold �∗

1 = . . . =
�∗
N is also the null-space of the Laplacian. In this case, the eigen-

vectors of the Laplacian that correspond to nonzero eigenvalues
can be used to construct the projection matrix V. For example, in
the case of N characters with symmetrical all-to-all coupling with
Ld = NI − 11T ≥ 0 we obtain 1

2 V(LdDg + Dg(Ld)
T )VT = NVDgVT > 0

for Dg > 0. In this case the contraction rate is given by �min =
mdmin

�
(g(�))
+

Ld
, with 
+

Ld
= N.

For general symmetric couplings with positive links with equal
coupling strength md > 0 a sufficient contraction condition is:

+

min(Ld)/
+
max(Ld) > max(|g(�) − mean(g(�))|)/mean(g(�)), with
ly stable control of articulated crowds, J. Comput. Sci. (2012),

�

mean(g(�)) = 1/T
∫ T

0
g(�)d�. This condition was derived from

the fact that for symmetric (positive) matrices M1 and M2 for
(M1 − M2) > 0 it is sufficient to satisfy 
min(M1) > 
max(M2). This

dx.doi.org/10.1016/j.jocs.2012.08.019
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Fig. 4. Self-organized reordering of a crowd with 16 characters. Control dy

ufficient condition permits to constrain the admissible coupling
opologies dependent on the g(�). Alternatively, it is possible to
ntroduce low-pass filtering in the control dynamics to increase
he smoothness of the function g(�), see Ref. [3].

These stability bounds are illustrated by [Demo2] that shows
onvergent behavior of the characters when the contraction con-
ition md > 0, (Ld)s ≥ 0 is satisfied for all-to-all coupling. [Demo3]
hows the divergent behavior of a group when this condition is
iolated when md < 0. In these and the next demonstrations the
ctual values of interaction parameters md, mz, m > 0 (in cases,
hen they additionally satisfy the sufficient contraction condi-

ions) were obtained by matching the corresponding convergence
ates to those of the real human behavior in crowds [31].

(3) Step size control combined with control of step phase:
he dynamics is given by Eqs. (4) and (5) with md = 0. This dynam-
cs defines a hierarchically coupled nonlinear system (in type of
q. 8). While the dynamics would be difficult to analyze with
lassical methods, the dynamics for z(t) that is given by Eq. (4)
s partially contracting in the case of all-to-all coupling for any
ounded external input �(t) if mz > 0, Lz ≥ 0, and ω(t) > 0. These suf-
cient contraction conditions can be derived from the requirement
f the positive-definiteness of the symmetrized Jacobian apply-
ng similar techniques as above. The Jacobian of this subsystem is
(�, ω) = −mzDzg(�, ω)Lz , with the diagonal matrix (Dzg(�, ω))ii =
ig(�i + �0

i
) that is positive definite since g(�) > 0 and ω > 0. This

ubsystem is (exponentially) contracting and its relaxation rate is
etermined by �z = mzmin

�
(g(�))
+

Lz
(in the case of all-to-all cou-

ling) for any input from the dynamics of �(t), cf. Eq. (5).  The last
ynamics is contracting when (L�)s ≥ 0 and its relaxation rate is
� = k
+

L�
, where 
+

L�
is the smallest non-zero eigenvalue of (L�)s.

he effective relaxation time of the overall dynamics is thus deter-
ined by the minimum of the contraction rates �� and �z (Fig. 4).
Demonstrations of this control dynamics satisfying the contrac-

ion conditions are shown in [Demo4], without control of step
hase, and in [Demo5], with control of step phase.

(4) Advanced scenarios: a simulation of a system with sta-
le dynamics including both types of speed control (via step size
nd step frequency) and step phase control is shown in [Demo6],
nd a larger crowd with 16 avatars simulated using the open-
ource animation engine Horde3d [32], is shown in [Demo7]. In
his simulation an additional dynamics for obstacle avoidance and
he control of heading direction was activated during the unsort-
ng of the formation of avatars. Then this navigation dynamics was
Please cite this article in press as: A. Mukovskiy, et al., Dynamical
http://dx.doi.org/10.1016/j.jocs.2012.08.019

eactivated, and speed and position control according to the dis-
ussed principles result in the final coordinated behavior of the
rowd. (See [Demo8].) Finally, [Demo9] shows the divergence of

2 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video1.avi
3 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video2.avi
4 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video3.avi
5 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video4.avi
6 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video5.avi
7 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video6.avi
8 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video7.avi
9 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video8.avi
cs affects simultaneously direction, distance and gait phase. See [Demo7].

the dynamics for md < 0, violating the contraction condition for the
step phase dynamics. The two simulations shown in [Demo10] and
[Demo11] illustrate the convergence for a crowd with 49 avatars for
two different values of the strength of the distance-to-step size cou-
pling, the parameters of step phase coupling remaining constant.
The development of stability bounds and estimates of relaxation
times for more complicated scenarios is the goal of ongoing work.

(5) Control of heading direction: for the control of heading
directions in presence of couplings that affect the step phases, the
contraction conditions can be derived exploring the result on hier-
archically coupled systems discussed in Section 5. For the analysis
of the stability of the dynamics defined by Eq. (6) it is thus suffi-
cient to analyze the contraction properties of the dynamics for the
heading direction  , treating the additional term ω(t)g (�(t)) as an
external input to the   subsystem.

Assuming a constant goal direction, it was  shown in Ref.
[2] (Ch. 3.9)  that the uncoupled dynamics for one character,
given by  ̇ = −ω(t)m sin(  −  goal) is contracting in the inter-
vals ] goal − � + 2�n,  goal + � + 2�n[, n ∈ Z for constant m > 0. (If
�(t) is a smooth strictly increasing function of t with the substitu-
tion  (�(t)) =  (�) (and ω(t) = d�/dt) the last differential equation
can be rewritten then: d /d� = − m sin( (�) −  goal)).

Another possibility is to realize direction control is to feed back
the circular mean average direction of all characters as joint control
parameter � = angle(1/N

∑
i exp[ i

√−1]). In this case the dynam-
ics is given by

 ̇i = ωi(t)(sin(� −  i) + g (�(t))), ∀i ∈ [1 . . . N], (12)

which is suitable for the application of Theorem 2. This implies
that the overall dynamics is contracting if the dynamics  ̇i =
ωi(t) sin(�(t) −  i) is contracting for any �(t). The same Theorem
guarantees contraction, when the consensus variable � is esti-
mated by a low-pass filter (with time-constant  ̨ > 0):  ̨�̇ = −� +
angle(1/N

∑
i exp[ i

√−1]). The simulation shown in [Demo12]
illustrates the consensus scenario defined by Eq. (12), (without a
synchronization of gait cycles).

Conclusions

The analysis and design of the dynamic properties of the for-
mation of ordered patterns in crowds so far has been only rarely
treated in computer animation, and treatments in control theory
typically assume highly simplified agent models. To our knowledge,
this paper presents the first systematic treatment of the dynamics
of order formation in crowds using more complex agent models
that include articulation of the characters during locomotion. Com-
bining a set of specific approximations of the system dynamics with
ly stable control of articulated crowds, J. Comput. Sci. (2012),

Contraction Theory as mathematical framework for the system-
atic treatment stability properties of complex nonlinear systems,
we presented a number of examples for the derivation of stability

10 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video9.avi
11 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video10.avi
12 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video11.avi
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ounds for nontrivial scenarios of coordinated crowd behavior dur-
ng locomotion. We  think that the shown examples demonstrate
he feasibility of the applied approach and make it plausible that
t can be extended for even more complex scenarios. Necessarily,
his first exploratory study is highly incomplete and the spectrum of
nalyzed behaviors of crowds is still very limited. Future work will
ave to add other dynamical primitives to the model architecture,

ncluding ones suitable for the realization of other behaviors than
ocomotion. The integration of such additional components will
ecessitate the development of new approximations and applica-
ions of additional methods from nonlinear control theory in order
o derive the relevant contraction bounds. This defines the research
genda for our future work.
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